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ABSTRACT

This work investigates the viability of Gold code phase modulation

in acoustic tomography, a technique for large scale measurement of

ocean characteristics. Maximal-length sequences are currently used

for modulation, requiring time division multiplexing of tomographic

signals to avoid interference. The proposed alternative scheme of code

division multiplexing Gold code modulated signals promises more

rapid, simultaneous ocean projections. Computer simulation enables

side-by-side comparison of the Gold code and maximal-length

sequence modulating methods. Based on favorable results, a specific

set of Gold codes is recommended for future use in a tomography

experiment.
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I. INTRODUCTION

Present-day ocean acoustic tomography relies on time division

multiplexing of signals [Refs. 1,2,3]. Simultaneous transmissions have

not been used for essentially two reasons:

1. for multiple sources transmitting carriers phase modulated with
the same m-sequence, ambiguity would exist as to which source

transmitted a given detected signal [Refs. 2,3]; and

2. for sources transmitting carriers modulated with different m-
sequences, spurious arrivals caused by sequence cross-

correlation peaks could easily be mistaken for genuine multipath
arrivals.

This work investigates the possibihty of code division multiplexing

tomographic signals. Gold code phase modulation has the advantage

of uniquely identifying each transmitted signal by its code, eliminating

ambiguity [Refs. 4,5]. Additionally, due to Gold codes' low

crosscorrelation, spurious arrival peaks can be reduced.

In all acoustic tomography work to date, travel time deviation is

the key parameter measured. The time and space-dependent

variations from an anticipated travel time become the basis for

inferring ocean characteristics through mathematical inverse

analysis. Classical impulse-type acoustic sources (such as explosions)

tend to suffer great attenuation and time spreading during ocean

acoustic travel, as shown in Figure 1. Additionally the presence of

noise makes accurate travel time determination even more

challenging. It is for these reasons that acoustic tomography has



resorted to signals frequency-spread by phase modulation with

maximal-length sequences [Ref. 2]. As will be shown in Chapter II,

such modulation schemes achieve tremendous processing gain

through pulse compression, making accurate travel time

measurements achievable.

The purpose of this work is to explore alternative sequences for

tomography signal phase modulation. Specific objectives in this

pursuit are to prove (or disprove) that Gold codes will enable

simultaneous signal transmission without significant degradation of

travel time determination capabiHty. If achievable, the advantages of

this approach over the time division multiplexing scheme currently

employed are:

1. improvement in data gathering rate by a factor of R where R is

the number of signals simultaneously transmitted;

2. enables accurate velocity tomography measurements to be made
with simultaneous to-and-fro shots at numerous projection

angles; and

3. hands-off operation, eliminating timing and logistical problems
associated with moving or switching transmitters and receivers.

An additional objective of this work is to recommend a specific set

of codes for future use in a simultaneous transmission tomography

experiment.

In the succeeding chapters this work will be described as follows:

1. background on maximal-length sequences and Gold codes and
their properties;

2. description of computer simulation of Gold codes versus m-
sequences in single signal tomography;



3. description of computer simulation of Gold codes versus m-
sequences in multi-signal tomography; and

4. results, conclusions, summary, and recommendations.



II. M-SEQUENCES AND GOLD CODES

Maximal length sequences are generated by certain linear

feedback shift register (LFSR) configurations derived from finite field

arithmetic. Without getting into great detail on finite field theory, the

basic concepts will now be presented.

Polynomials which cannot be expressed as a product of lower

order polynomials are referred to as irreducible polynomials [Ref. 6].

A subset of irreducible polynomials of interest is the set of primitive

polynomials. Primitive polynomials p(x) of degree m possess the

characteristic that the smallest integer n for which p(x) divides

r = x%l (1)

evenly is

n = 2"" - 1 {2}

Primitive polynomials can be realized in hardware in the form of

shift registers with linear feedback connections through exclusive-or

gates. Such constructions generate m-sequences, periodic binary

codes with certain unique properties. A signal designer in search of an

m-sequence must therefore first find its corresponding primitive

polynomial, a potentially nontrivial pursuit. Fortunately, many have

done this before and the way has been paved. Tables of primitive



polynomials up to very high order are in the literature [Refs. 6,7], so

the signal designer need only choose from the published list for the

order polynomial required. Polynomials in these tables are, by

convention, presented in octal format, so as to easily fit on a printed

page. An example is in order to demonstrate how one arrives at the

LFSR design given a typical table entry.

EXAMPLE:
9

An m-sequence of length 511 (2 -1) is desired. From the table of

primitive polynomials the entry 1461 is chosen.

Step 1: The entry is rewritten in binary coded decimal (BCD) as

follows:

octal 14 6 1

BCD 001 100 110 001 .

Step 2: The primitive polynomial is normally written in powers of D
rather than x to emphasize feedback delay. Its coefficients are either

1 or as appropriate in the binary code, with the rightmost bit

considered least significant (i.e., the rightmost bit becomes the
coefficient of D').

4 „5 „8 _9
p(Dj = i + D%D +D%d' {3}

Step 3: A LFSR reflecting the appropriate delays fed back is

constructed, here shown in Figure 2. Given any initial load (except

all zeros, an illegal state) this LFSR will output a single m-sequence
repetitively as the clock continually shifts bits through. Different

initial loads will not change the output; they will produce a shifted

version of the same m-sequence. As a side note it should be added
that, due to the possibility of the illegal all zeros state occurring, the

LFSR should have a detection/correction mechanism for this

eventuality.



Several properties peculiar to maximal length sequences will now

be noted:

1. Periodic Property. The period N of an m-sequence is

N = 2"- 1 (4)

where n is the number of stages in the shift register generator.

2. Balance Property. The total number of ones in one period of an
m-sequence is

^(N+l) =
2"-'

{5}

and the total number of zeros is

|(N-1) = 2"-'-
1 {6]

3. Window Property. A sliding window of width n bits will contain

every possible combination of ones and zeros (except all zeros) as

it is shifted through the repeated sequence.

4. Run Length Property. For any m-sequence there is exactly:

1. 1 run of ones of length n
2. 1 run of zeros of length n-1
3. 1 run of ones and one run of zeros of length n-2
4. 2 runs of ones and 2 runs of zeros of length n-3

5. 4 runs of ones and 4 runs of zeros of length n-4

n. 2"" runs of ones and 2"" runs of zeros of length 1.



5. Shift-and-Add Property. The digit-by-digit binary sum (no
carries) of an m-sequence and any shift of that same sequence is

another shift of the sequence.

6. Autocorrelation Property. The periodic autocorrelation function

6b(n) of any m-sequence is two-valued and given by

[Refs. 6,8]

As Equation 7 and Figure 3 indicate, maximal length sequences

possess single high-peaked periodic autocorrelation functions with no

sidelobes. The magnitude of such correlation functions equals N (the

sequence length) at zero shift and +1 elsewhere. Correlation can be

regarded as a measure of similarity. Therefore, the m-sequence

autocorrelation characteristic indicates that any shifted version of an

m-sequence matches the original sequence very poorly, while the

unshifted sequence matches itself exactly. It is this property which

renders m-sequences so useful for tomography. The transmitted

tomographic signal

Acos[ 27rfot -h 0(t) ] {8}

arrives attenuated, noise-corrupted, and phase-shifted at the receiver

as

Bcos[ 27:fot -I- e(t) -K}) ] + n(t) (9}



Here B is the initial amplitude A attenuated along the acoustic path,

and

({) = -27ufoT {10}

represents the phase shift of the sinusoid caused by travel time i.

When correlating the received signal of Equation 9 with the m-

sequence used for modulation, the horizontal displacement of the

correlation peak corresponds to the travel time delay for that signal.

Although m-sequence autocorrelation properties are widely

known and exploited, their crosscorrelation characteristics are often

overlooked. If one considers transmitting not one but several signals

simultaneously, the interference between these signals will be related

to their periodic crosscorrelations. The signal designer's objective

should therefore be to minimize crosscorrelations while maximizing

autocorrelation peaks of the modulating sequences.

M-sequence crosscorrelation functions are multiple-valued.

Additionally, they depend on the particular pair of sequences chosen.

For a specific case with N=127, a crosscorrelation function is shown

in Figure 4. Certain pairs of m-sequences can be found with three-

valued, minimum crosscorrelations. Such sequences, denoted

preferred pairs, have crosscorrelations which take on one of the

following values:



{11}

where

-(n+l)
1+22

,
n odd

t(n) = \ .,„^„ /, (12)

1+22
, n even, n ^ mod 4

as can be observed in Figure 5 for N =127.

Preferred pairs are the best among all m-sequences in terms of

minimizing crosscorrelation interference v^hile maintaining high

single-peaked autocorrelations. They should be good choices for phase

modulation in multi-signal tomography. Sets of sequences containing

all mutually-preferred pairs are called maximal connected sets.

Unfortunately, for any given sequence length, there are only a

handful Mj^ of preferred pairs in each maximal connected set. Only a

handful of signals could therefore be modulated and transmitted with

minimum interference, thus limiting the utility of preferred pairs for

multi-signal tomography when more than a few signals are to be

simultaneously transmitted.

Table 1 shows set sizes and crosscorrelation bounds for the sets of

all m-sequences and for maximal connected sets. The superiority of

preferred pairs in crosscorrelation characteristics over random m-



sequences increases with n, at least through n=14, which represents a

sequence length of 16383 [Ref. 10].

For applications requiring large groups of signals with low

crosscorrelation bounds, some hybrid of preferred pairs which

preserves their crosscorrelation properties but includes many

sequences is desirable. Sets of Gold codes possess just such

characteristics.

Any preferred pair of m-sequences becomes the first two Gold

codes in a complete set of N + 2. The remaining N sequences can be

analytically constructed through bit-by-bit binary addition (no carries)

of one member of the preferred pair with all possible circular shifts of

the other. This operation is easily implemented in hardware with an

exclusive-or operation on the outputs of the LFSRs generating the two

preferred pairs. Each Gold code in the resulting set ofN + 2 possesses

the same low three-valued crosscorrelation with all other sequences in

the set, shown in Figure 6 for N=127. This makes them well-suited

for multi-signal applications where low intersignal interference is

required. Unfortunately, although the Gold code crosscorrelations are

the same as preferred pairs of m-sequences, their autocorrelations are

not. Only the initial preferred pair in each Gold code set are m-

sequences and possess their single-peaked autocorrelation. The

remaining N Gold codes are not m-sequences. Of all the m-sequence

properties, only Properties 1 and 2 hold true for these remaining Gold

codes. Of particular interest are their autocorrelation properties.

10



Although these Gold codes still possess high-peaked autocorrelations,

unHke m-sequences they have sidelobes with maximum level

©c = t(n) .
- {13}

Note from Table 1 that for N=127 the value of t(n) is 17. As expected,

this is precisely the maximum Gold code autocorrelation sidelobe level

shown in Figure 7.

Clearly there is a tradeofT between autocorrelation peaks and

sidelobe levels for sets of sequences. A theoretical relationship is

e 2l ., . /o2

N/
N- 1

N ( K - 1)

ea

In,/
> 1 {14]

where Q^ is the maximum periodic crosscorrelation magnitude, e^ is

the maximum out-of-phase periodic autocorrelation magnitude, N is the

sequence length , and K is the number of sequences in the set. [Ref 10]

11



III. SIMULATION OF SINGLE-SIGNAL TOMOGRAPHY

A MODEL DESCRIPTION

In an actual tomography experiment, the received signal of

Equation 9 is initially bandpass filtered to remove any noise outside the

signal bandwidth. Next, as shown in Figure 8, the signal is power

divided and passed through a quadrature demodulator. At this point

,

lowpass filtering passes the difference frequency only, blocking the

sum at twice the carrier frequency. After sampHng above the Nyquist

rate, the received signal is reduced to a set of filtered, discrete samples.

By correlating these samples with the original modulating sequence, a

peak is obtained whose horizontal position on the time scale

corresponds to deviation of the acoustic signal arrival time from the

assumed or predicted value. Inverse theory transforms such travel

time deviations from various projections to a matrix of ocean

densities, the quantities sought.

In the computer model, approximations have been made to actual

experimental technique and ocean phenomena. Noise which is

assumed to be originally additive, white, and Gaussian, after

bandlimiting by the front end bandpass filter, takes on other

properties. From the theory of narrowband random processes, it can

be shown that at the output of the correlator receiver, the in-phase

and quadrature components of noise are related by a Hilbert

transform [Ref 11].

12



The in-phase and quadrature channel noise samples are obtained

by digital Hilbert transforming and lowpass digital filtering a vector of

normally distributed samples with zero mean and prescribed

variance.

Time-delayed in-phase and quadrature signal samples are

generated by FORTRAN code, then passed through the digital lowpass

filter. By summing the appropriate noise and signal samples, the in-

phase and quadrature baseband received signals are approximated in

the simulation. Signal-to-noise ratio (SNR) is varied by fixing the

Gaussian noise sample variance and changing signal amplitudes

accordingly. Relative phase is adjusted with signal time delay. In

order to compare m-sequences to Gold codes, they are tested side-by-

side under identical conditions of SNR and signal delay. Sidelobe levels

on the final correlation are the quantities used for comparison.

Correlation with the modulating sequence is calculated by means of

Discrete Fourier Transforms (DFTs).

B. PROCEDURE

This computer simulation was tailored after velocity tomography

experiments conducted in 1984. Sequence lengths of 511 digits

modulate a 400 Hz carrier. Digit durations of .01 seconds produce a

signal period of 5.11 seconds [Ref. 2].

The m-sequences or Gold codes to be used for signal modulation

were first generated with appropriate LFSR configurations. The

LFSRs are based on the octals 1021 and 1751, selected from the tables

of primitive polynomials [Refs. 6,7]. The binary (0,1) sequences

13



produced were mapped to (1,-1) sequences, then used to phase

modulate the carrier with angle

e^= ian\m). {15}

[Ref. 21

Baseband in-phase and quadrature signal components were

generated as the cosine and sine of this modulating angle. The

signals were sampled twice per digit, resulting in 1022 samples each

for the in-phase and quadrature channels. To simulate an actual

received signal, noise samples were added and the result lowpass

filtered.

Noise samples were created by first generating a vector of 1100

normally distributed samples with zero mean and variance of 0.25.

These samples were passed through a 19th-order digital Hilbert

transformer with frequency response shown in Figures 9 and 10 and

filter coefficients listed in Table 2 [Refs. 12,13]. Design of this filter is

discussed in Appendix C. The filter input and output vectors

represent in-phase and quadrature noise components, respectively.

After adding these noise samples to the appropriate in-phase and

quadrature signal samples generated above, lowpass filtering was

performed. For this operation, an 8th-order Butterworth digital filter

with a 3 dB cutoff frequency of 90 Hz was employed. Its frequency

response is shown in Figures 11 and 12, with filter coefficients hsted in

Table 3 [Refs. 12,13], and design discussion in Appendix D [Ref. 13].

14



The output samples of this filter represent the in-phase and

quadrature received signal-plus-noise samples. From these 1100

samples, the 1022 center samples were extracted to avoid end fringe

effects. This simulates one full period of samples in a periodic stream.

These samples were next correlated with 1022 code samples. The

periodic or circular correlation of 1022 received signal samples with

1022 samples of the modulating binary (-1-1,-1) code can be performed

in several different ways. The method used in this simulation was

correlation by DFTs. Let the received signal samples be x (n) and the

binary code samples be x (n). Both sequences are the same length, as

is required for circular correlation. The periodic correlation of these

two sequences itself repeats with period 1022. If X(k) is used to denote

the DFT of x(n),

1021 ; (
2;: \ ,

X(k) = £ x(n)eMl022)
^^gj

n=0

Then the periodic correlation of the sequences x (n) and x (n) is given

by an Inverse Discrete Fourier Transform (IDFT):

Xo(n) = IDFT
3k

X,(k)Xc(k) (17}

[Ref. 13]

Sidelobe levels of this correlation are compared for m-sequence and

Gold code modulation as a measure of their relative merit.

15



C. RESULTS

Figures 13 and 14 show the key results for a SNR=0 dB, a typical

region of operation for tomography. Maximum sidelobes for the m-

sequence correlations are at -35 dB, while for Gold codes the

maximum sidelobes are at -21 dB.

Maximal-length sequences outperformed Gold codes in single-

signal tomography, and this comes as no surprise. The two-valued

autocorrelation of m-sequences is optimal, and since there is no second

signal to act as a jammer, crosscorrelation properties are not

significant.

16



IV. SIMULATION OF MULTIPLE-SIGNAL

TOMOGRAPHY

A MODEL DESCRIPTION

The computer simulation for multi-signal tomography is identical

to that described in Chapter III for single-signal tomography, with one

exception. In this simulation, a jamming tomographic signal is added

using a different m-sequence or Gold code from the transmitted signal

of interest. For a fair comparison, an average m-sequence is chosen to

modulate the m-sequence jammer. This m-sequence has a peak

crosscorrelation value of 95 with the primary modulating m-sequence,

as compared with a possible worst case of 113 (see Table 1) or the best

case of 33 if the preferred pair had been chosen.

B. PROCEDURE

The jamming sequences used were, as before, generated by LFSRs

constructed from octals picked from the table of primitive polynomials

described in Chapter II [Refs. 6,7]. Amplitudes of the corresponding

jamming signals were adjusted relative to the intended signal

amplitude to give the signal-to-jammer ratio (SJR) desired. The

jammer, in a process identical to that used for the primary signal, was

reduced to in-phase and quadrature samples. These samples, when

added to the corresponding signal-plus-noise samples, produced

samples of signal-plus-interference-plus-noise. After lowpass filtering,

correlation with the primary modulating sequence was performed as

17



described in Chapter III. Following correlation with the original

sequence, maximum sidelobe levels were compared for m-sequence

versus Gold code modulation.

C. RESULTS

Correlations for no noise and SJR=0 dB can be compared in

Figures 15 and 16. These results show maximum sidelobes for Gold

codes 6.3 dB lower than those for m-sequence modulation. As SNR

decreases, however, this advantage shrinks. For SNR=0 dB and

SJR=0 dB, a likely scenario for tomography, the Gold code sidelobe

advantage shrinks to 2 dB, as shown in Figures 17 and 18. The Gold

code performance improvement is therefore accompanied by

increased susceptibility to noise.

18



V. CONCLUSIONS

This work has explored the performance of Gold codes in phase

modulating ocean acoustic tomography signals. The following

conclusions and recommendations are based on results obtained from

computer simulation of one specific modulating arrangement (using

511-digit modulating sequences and 90 Hz bandwidth signals) only.

Therefore, our results strictly apply to only this particular

configuration. Any theories extending beyond this work will require

vaUdation through additional research. However, this work does show

that Gold codes can be used to advantage in ocean acoustic

tomography.

As predicted by theory, m-sequences outperform Gold codes in

single-signal tomography due to their two-valued autocorrelation

function. Gold code autocorrelation sidelobes reduce the pulse

compression processing gain available by 14 dB in this simulation

operating near a SNR=0 dB. However, as sequence length increases

beyond 511, the Gold code sidelobe levels drop, and their performance

in single-signal tomography will improve.

The multiple-signal tomography simulation results are not so

straightforward to analyze. For a dB interference level, 511-digit

Gold codes show a 6.3 dB advantage in a no-noise environment,

diminishing to a 2 dB advantage as the SNR decreases to zero. The

key m-sequence results in Figures 15 and 17 show an insensitivity of

the m-sequence modulating scheme to noise. Note that there is almost

19



no change in sidelobes between the no-noise situation and the SNR=0

dB arrangement. By contrast, Gold code results in Figures 16 and 18

show appreciable performance degradation as the SNR is reduced. A

theory which accounts for this disparity is again related to the

autocorrelation sidelobes and sequence lengths. This theory follows:

correlation, which is tomography's travel time measuring tool, is a

product of shifted signals-plus-noise. If one regards the

autocorrelation and crosscorrelation functions of the modulating

sequences as temporal filters in series, note that noise is passed where

both filters have sidelobes. Since m-sequences have autocorrelation

sidelobes of magnitude 1/N , virtually no noise passes. In contrast,

Gold codes' three-valued crosscorrelations are appreciable, although

small at sequence lengths of 511. When these peaks line up with

autocorrelation sidelobe peaks, noise is passed. However, if the

modulating sequence length is increased, relative sidelobe levels should

decrease, making Gold codes more noise-resistant. Gold codes of 511-

digits offer the best performance in multi-signal tomography at very

low signal-to-noise ratios. Their advantage varies with SNPi, from 6.3

dB with no noise to 2 dB for SNR near dB. The answer is to utilize

these shorter Gold codes whenever possible with as much signal power

as is feasible to maximize their advantage. Future tomography

experiments could try out Gold codes as a logistics saving technique.

An ideal application would be in a velocity tomography experiment, in

which simultaneous transmissions contribute greatly to the accuracy

of the results. Additionally, use of longer Gold sequences should be

20



explored due to the downward trend of maximum crosscorrelation

with increasing sequence length discussed above.
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APPENDIX A. TABLES

TABLE 1. SET SIZES AND CROSSCORRELATION
BOUNDS FOR M-SEQUENCES AND FOR
MAXIMAL CONNECTED SETS. [REF. 9]

Number of B,^ for set of

n N = 2'*-l m-gequenccs all m-sequenceg Mn t(n)

3 7 2 5 2 5

4 15 2 9 9

5 31 6 11 3 9

6 63 6 23 2 17

7 127 18 41 6 17

8 255 16 95 33

9 511 48 113 2 33

10 1023 60 383 3 65

11 2047 176 287 4 65

12 4095 144 1407 129

13 8191 630 > 703 4 129

14 16383 756 >5631 3 257

15 32767 1800 >2a47 2 257

16 65535 2M8 >4095 513



TABLE 2. 19TH-ORDER HILBERT TRANSFORMER
COEFFICIENTS.

where:

H(z) = 8(5+ ajz +...^+ai9Z

aQ = .01603

aj = .01417

a2 = .02045

33 = .02874

34 = .03985

33 = .05533

a^ = .07584

a^ = .11824

a^ = .20664

a^ = .63476

ajQ = -.63476

ajj = -.20664

ap - -.11824

aj3 = -.07854

aj4 = -.05533

ai5 = -.03985

aj^ = -.02874

ap = -.02045

ajg = -.01417

aiQ = -.01603
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TABLE 3. 8TH-ORDER BUTTERWORTH DIGITAL
LOWPASS FILTER COEFFICIENTS.

-1 -8

ao+ aiz + ... + aoz
H(z) = — ^ ^

where:

1 + bjz + bgz

ag = .445085

aj = 3.56068

a2 = 12.46238

a3 = 24.92476

34 = 31.15595

a3 = 24.92476

a^ = 12.46238

ay = 3.56068

ag = .445085

bj = 6.390364

b2 = 18.00034

b3 = 29.17112

b4 = 29.73142

b5 = 19.5057

b^ = 8.041041

by = 1.903687

bg = .198103
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APPENDIX B. FIGURES
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Figure 1. Pulse Spreading and Attenuation.
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Figure 2. LFSR Realization of Octal 1461.
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Figure 3. M-Sequence Autocorrelation for N=127.
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Figure 4. Tj^pical M-Sequence Crosscorrelation, N=127.
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Figure 5. Preferred Pair Crosscorrelation, N=127.
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Figure 6. Gold Code Crosscorrelation, N=127.
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Figure 7. Typical Gold Code Autocorrelation, N=127.
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Figure 10. Frequency Response (Phase), 19th-Order
Digital Hilbert Transformer.
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Butter\\'orth Digital Lowpass Filter.
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Figure 12. Frequency Response (Phase), 8th-Order
Butterworth Digital Lowpass Filter.
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Figure 13. M-Sequence Single-Sigtial Tomography
Results, SNR=0 dB, N=511.

37



O

PJ
O
H
<:

Eli}

o

TIME (seconds)

Figure 14. Gold Code Single-Signal Tomography Results,
SNR=0dB,N=511.
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Figure 15. M-Sequence Multi-Signal Tomography
Results, No Noise, SJR=0 dB, N=511.
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Figure 16. Gold Code Multi-Signal Tomography Results,
No Noise, SJR=0 dB, N=511.
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Figure 17. M-Sequence Multi-Signal Tomography
Results, SNR=0 dB, SJII=0 dB, N=511.
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Figure 18. Gold Code Multi-Signal Tomography Results,
SNR=0 dB, SJR=0 dB, N=511.
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APPENDIX C. DIGITAL HILBERT TRANSFORMER
DESIGN

A SPECIFICATIONS

The purpose of a Hilbert transformer in this simulation was to

reproduce the properties of narrowband random processes which

additive white Gaussian noise assumes after bandpass filtering. A

19th-order filter (N=20) was chosen to closely approximate this

natural phenomenon. This filter design yields a theoretical error of

approximately 2.5% This can be verified from Figure 9, by observing

that the peak value (1.025) minus the ideal value (1.000) times 100

equals 2.5.

B. THEORY

An ideal Hilbert transform has the following frequency response:

H(e^^ = /-j' ^^""^ ]. (CI)

'

The impulse response can be obtained by integration:

2n

h(t) =
I

-je"' dec + j

•^0 Jn
je do)

(02)

After evaluating the integrals and replacing t with n for discrete

rather than continuous time, the unit sample response becomes
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h(n) =
{

^ ^ '

> . {C3}
, n =

This idealized Hilbert transformer impulse response has an infinite

number of terms, and is therefore unreaHzable. Truncating the series

of coefficients would eliminate the problem of infinite terms, but

simultaneously causes Gibbs phenomenon, representing 9% error near

transition points. Moreover, retaining more terms in the truncation

will not reduce the Gibbs error; it merely confines it to a more narrow

frequency band. Consequently a different approach is used.

The realizable 19th-order (N=20) digital Hilbert transformer

utilized was computer-designed by first frequency sampling the ideal

frequency response in Equation Cl every 27c/N radians. Note that the

samples so obtained are the DFT coefficients of a filter which has

precisely the same frequency response as an ideal Hilbert transform

only at the discrete frequencies sampled. For all other frequencies an

approximation error occurs. This error is

E(eJ") = D(e-''").P(e-'")Q(eJ") , (C4)

where D(ei'^)is the desired ideal frequency response and

H fe ) = P(e )Q(e ) {C5}
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is the complex conjugate of the actual frequency response. This error

can be minimized by first allowing samples in the transition region (at

very low frequency, outside the required passband) to become

variables rather than fixed. By expressing P as a linear combination

of cosine functions, the problem of minimizing the maximum error

between samples becomes a Chebyshev approximation problem. This

problem is solved by iteration.

The computer program uses what is known as the Remez

algorithm to solve the Chebyshev problem. This solution hinges on the

theorem that the best Chebyshev (i.e., weighted sum of r cosines)

approximation to a function exhibits r+1 maxima or minima. For the

first iteration an initial guess of the r+1 frequencies is made, where for

N even, as in this case, ^

N
r = y - 1

, (C6}

and the error function is set alternately equal to +5 or -6
, where

6o = 0.025 , {C7}

the theoretical peak error mentioned in Section 1 of this Appendix.

This gives rise to r+1 linear equations which are simultaneously solved

to obtain new values 6. For each successive iteration 6 is used to
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interpolate new values for P(e'''^) on the r frequencies sampled. The

optimal approximation occurs for

ECe"^) < 5o {C8)

and r+1 extrema. The program iterates until these conditions are met

or until 25 iterations are complete. Finally the impulse response

coefficients are derived from PCe'®) as follows:

Fie"^ ) = IDFT P (e ) Q (e ) {C9}

Inputs to the design problem were the filter length N=20 and the

transition band edge 0.05, which represents the range of digital

frequency theta

0<e<0.3142, {CIO}

where the frequency samples are assigned as variables. The output

filter coefficients are shown in Table 2. For the actual design program

source code and more detailed documentation the reader is referred to

Rabiner and Gold [Ref 12].
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C. IMPLEMENTATION

To implement this filter the transfer function was first converted

to a difference equation of the following form:

y(n) = aox(n) + aix(n-l) + ... + a]9x(n-19)
. {Cll}

The output sequence y(n) was obtained by iterative computer solution

of this difference equation, where the a- are given in Table 2 [Ref. 13].

Due to filter load time and delay the output (quadrature) noise

sequence was ignored for the first twenty samples, and shifted by ten

samples thereafter to align with the corresponding input (in-phase)

noise sequence.
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APPENDIX D. DIGITAL LOWPASS FILTER DESIGN

A. SPECIFICATIONS

The purpose of the lowpass filter in the computer simulation was

to reproduce the filtering process used in actual ocean tomography

experiments. An 8th-order Butterworth filter was chosen because this

is typical in such apphcations. A cutoff fi-equency of 90 Hz was also

chosen to provide data on a scale comparable to actual tomographic

experiments [Ref. 2].

B. THEORY

The analog Butterworth lowpass prototype filter has transfer

function

H(s) =
2 8 , {Dl}

1 + ais+ a2S + ... + ags

where the a^ are from the literature [Ref. 13]. For this appHcation two

changes must be made. First, the filter must be converted from

analog to digital. Second, the 3 dB cutoff frequency must be converted

from an analog normahzed frequency of 1.0 to a digital frequency of

„ _ 27rf, _ 271(90)
^'--[, 200- (D21

This can be accomplished in one step with the lowpass transformation
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H(z) = H(s)| j^] z+ 1

Once the substitution in Equation D3 is applied to Equation Dl,

simplification yields the transfer function and coefficients presented in

Table 2.

C. IMPLEMENTATION

This digital filter, like the Hilbert transformer, is implemented by

computer solution of its difference equation. In this case, due to terms

in the transfer function denominator as well as its numerator, the

system is recursive and involves output feedback:

y(n) = Xaky(n-k)-£ bj, x(n-k) , {D4)
k=i k=o

where in Equation C15 the aj^ and bj^ are the Butterworth filter

coefficients listed in Table 3. Additional information on the design and

implementation of this filter can be found in Strum [Ref. 13].
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